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Abstract	
	
Recent	advances	in	Model-based	fMRI	approaches	enable	researchers	to	investigate	
hypotheses	about	the	time	course	and	latent	structure	in	data	that	were	previously	
inaccessible.	Cognitive	models,	especially	when	validated	on	multiple	datasets,	allow	for	
additional	constraints	to	be	marshalled	when	interpreting	neuroimaging	data.	Models	can	
be	related	to	BOLD	response	in	a	variety	of	ways,	such	as	constraining	the	cognitive	model	
by	neural	data,	interpreting	the	neural	data	in	light	of	behavioural	fit,	or	simultaneously	
accounting	for	both	neural	and	behavioural	data.	Using	cognitive	models	as	a	lens	on	fMRI	
data	is	complementary	to	popular	multivariate	decoding	and	representational	similarity	
analysis	approaches.	Indeed,	these	approaches	can	realise	greater	theoretical	significance	
when	situated	within	a	model-based	approach.	
	
	
	
	

Highlights	
	
Cognitive	models	can	formalise	theories	to	make	assumptions	and	predictions	clearer.	
	
Cognitive	models	offer	additional	constraints	when	interpreting	the	BOLD	response.	
	
Models	can	go	from	behaviour	to	BOLD,	vice	versa,	or	address	both	simultaneously.	
	
Model-based	approaches	can	incorporate	pattern	similarity	and	decoding	approaches.	
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Introduction	
	
Memory	by	definition	involves	processes	that	extend	over	time	and	involve	generalisation	
or	similarity	structure.	Formal	models	offer	a	way	to	characterise	these	processes	and	
better	understand	their	brain	basis.	As	I	will	review,	there	are	a	number	of	cases	in	which	
fMRI	researchers	could	not	have	made	an	advance	without	a	model-based	analysis	
approach.	
	
Models	can	play	a	number	of	constructive	roles	in	psychology,	neuroscience	and	science	
more	broadly.	One	function	is	simply	organising	one's	ideas	and	making	assumptions	clear.	
Each	step	needs	to	be	detailed,	which	can	reduce	wiggle	room	relative	to	purely	verbal	
theories.	Whatever	wiggle	room	is	left	(e.g.,	tuneable	parameters)	is	made	explicit.	
	
As	a	consequence,	what	is	predicted	under	different	circumstances	is	made	clear.	Rather	
than	debate	what	a	theory	predicts,	a	model	can	be	simulated.	For	example,	early	work	
showing	an	advantage	in	processing	category	prototypes	led	researchers	to	believe	that	
abstract	prototypes	were	stored	in	memory,	but	subsequent	work	demonstrated	such	
effects	were	compatible	with	exemplar	models	that	store	no	abstractions	in	memory	[1].	
More	recently,	models	have	played	a	related	role	in	the	design	and	interpretation	of	fMRI	
studies	of	memory	[2,3].	Models	can	play	a	constructive	role	in	directing	empirical	
investigations.	
	
Science	often	progresses	by	evaluating	competing	theoretical	accounts.	Models	afford	the	
possibility	of	model	comparison	in	which	competing	accounts	can	be	pitted	against	one	
another	and	the	model	that	performs	best	can	be	favoured.		For	example,	Mack	and	
colleagues	[4]	formally	evaluated	whether	the	representations	in	an	exemplar	or	prototype	
model	best	matched	the	BOLD	response	and	found	the	exemplar	model	was	more	
consistent	(also	see	[5]).	Recent	work	evaluating	whether	the	hippocampus	learns	to	
associate	objects	and	words	incrementally	or	in	an	all-or-none	fashion	used	a	related	
approach	that	favoured	the	all-or-none	account	[6].	
	
Models	can	serve	a	powerful	integrative	role	by	linking	seemingly	disparate	findings	through	
common	computational	mechanisms.	For	example,	a	simple	model	of	familiarity	and	
recognition	memory	captured	findings	from	both	fMRI	studies	of	visual	categorisation	and	
word	list	memory	[7].	In	my	own	work,	the	same	clustering	approach	to	understanding	
human	learning	has	been	applied	to	a	number	of	fMRI	studies	[8–12],	which	helps	to	
theoretically	link	studies.		Recent	work	[13]	has	extended	these	same	model	mechanisms	to	
offer	an	alternative	explanation	for	place	and	grid	cell	responses	in	rodents	and	humans.	
This	account	makes	novel	predictions	for	how	cell	responses	should	change	under	different	
experimental	conditions.	
	
The	aforementioned	models	can	be	considered	cognitive	models.	These	models	are	
hypothesised	to	involve	the	same	processes	and	representations	as	the	human	mind.	
Cognitive	models	reside	at	Marr's	[14]	algorithmic	level	and	are	well-placed	to	help	explain	
how	the	brain	implements	higher-level	computations	[15].	Below,	I	will	discuss	the	various	
ways	that	cognitive	models	can	be	related	to	fMRI	data.		
	



In	addition	to	using	cognitive	models,	neuroscientists	also	use	formal	models	as	purely	data	
analysis	tools.	For	example,	the	Generalised	Linear	Model	(GLM)	itself	is	a	formal	model	that	
has	assumptions	and	tuneable	parameters	that	are	fit	to	data.	Of	course,	the	GLM	is	not	a	
model	of	how	people	process	and	represent	information.	Other	examples	of	data	analysis	
tools	include	Dynamic	Causal	Modelling	[16],	techniques	to	measure	the	intrinsic	or	
functional	dimensionality	of	fMRI	data	[17],	and	Multi-Voxel	Pattern	Analysis	(MVPA).	
	

	
Figure	1:	The	top	row	illustrates	approaches	that	are	not	model-based	in	that	they	don’t	leverage	a	cognitive	model	of	the	
task.	For	example,	in	the	top-left	panel,	a	standard	analysis	might	identify	voxels	that	are	more	active	for	faces	than	for	
house	stimuli,	whereas	in	the	top-right	panel	a	decoder	might	try	to	classify	whether	the	participant	is	viewing	a	house	or	a	
face	stimulus	on	each	trial.	In	the	bottom	row,	a	cognitive	model	is	at	the	centre	of	the	analysis.	In	the	bottom-left	panel,	
some	measure	from	the	cognitive	model	(which	is	usually	fit	to	behavioural	data),	such	as	item	familiarity,	learning	update,	
etc.,	is	entered	into	the	GLM.	Such	an	analysis	will	identify	voxels	that	show	a	similar	activation	profile	to	the	model	
measure.	In	contrast,	in	the	bottom-right	quadrant,	a	classifier	is	applied	to	the	brain	to	try	to	decode	some	internal	
measure	from	the	cognitive	model.	In	this	case,	models	are	favoured	to	the	extent	that	their	internal	state	is	decodable	[4].	

MVPA	decoding	approaches	apply	a	machine	classifier	to	"mind	read"	from	the	BOLD	
response	whether	a	participant,	for	example,	is	viewing	a	house	or	a	face	[18].	Although	
these	are	not	psychological	models,	they	can	be	used	to	make	interesting	behavioural	
predictions.	For	example,	participants	tend	to	have	faster	response	times	for	stimuli	that	are	
further	from	the	classifier's	decision	bound,	which	indicates	the	classifier	is	more	confident	
about	its	decision	[19].	Decoding	approaches	can	also	be	used	to	determine	when	people	
are	engaging	in	replay	[20–23].	The	line	between	what	is	a	cognitive	model	and	a	data	
analysis	tool	can	be	blurred	at	times.	
	

Linking	cognitive	models	to	the	BOLD	response	
	
In	a	typical	task	fMRI	analysis,	experimental	conditions	are	contrasted	with	one	another.	For	
example,	one	may	contrast	voxels	that	are	more	active	for	face	than	for	house	stimuli.	The	
simplest	model-based	analysis	replace	the	stimulus	condition	with	some	model	measure	
(e.g.,	prediction	error)	that	varies	across	trials	[24].	By	entering	this	regressor	(e.g.,	
prediction	error)	from	the	cognitive	model	into	the	GLM,	one	can	evaluate	which	voxels	co-
vary	with	the	cognitive	construct.	As	shown	in	Figure	1,	both	the	typical	contrast	approach	
and	simple	model-based	analyses	are	univariate.	Instead,	standard	MVPA	analyses	start	
from	a	collection	of	voxels	(multivariate)	and	aim	to	predict	some	experimental	condition,	



such	as	whether	the	participant	is	viewing	a	house	or	a	face.	One	innovation	is	to	make	the	
target	of	decoding	a	model	measure,	such	as	item	familiarly	according	to	a	cognitive	model	
[4].	The	four	quadrants	shown	in	Figure	1	are	not	an	exhaustive	taxonomy	of	how	to	relate	
models	to	the	BOLD	response	(for	a	more	complete	treatment,	see	[25,26]).	
	
Perhaps	because	it's	relatively	straightforward,	the	univariate	model-based	approach	is	
most	common	in	the	field.	Typically,	a	model	is	fit	to	behavioural	data	and	then	used	as	a	
lens	on	the	fMRI	data.	For	example,	an	associative	learning	model	was	fit	to	behavioural	
data	from	a	task	where	people	formed	impressions	of	various	social	groups	through	trial-by-
trial	feedback	[27].	The	fitted	model	provided	a	GLM	trial-by-trial	measure	of	valence	or	
prejudice	for	each	group,	which	tracked	activity	in	the	anterior	temporal	lobe	in	the	model-
based	analysis.	Model-based	analysis	was	critical	for	capturing	changes	in	memory	across	
study	trials.	

	
Figure	2:	Panels	a	and	b	show	model-based	regressors	for	a	measure	of	recognition	strength	(i.e.,	familiarity)	and	error	
correction	(i.e.,	learning	update).	These	model-based	regressors	track	hippocampal	activity	at	the	stimulus	presentation	and	
feedback	phases	of	trials,	respectively	[8].	In	contrast,	a	standard	contrast	of	exception>rule-following	items	(panels	e	and	
f)	results	in	no	statistically	significant	voxels,	because	this	contrast	does	not	track	the	time	course	of	hippocampal	activity.	

In	a	category	learning	study	[8],	a	model-based	analysis	with	a	clustering	model	of	learning	
was	critical	to	capturing	two	time	courses,	one	across	trials	and	one	within.	This	study	
examined	the	hippocampus's	role	in	acquiring	categories	in	which	most	items	followed	a	
rule	but	some	items	(exceptions)	did	not.	A	clustering	model	[28]	was	fit	to	the	behavioural	
data	(i.e.,	the	learning	curves)	and	two	model-based	measures	were	entered	into	the	GLM,	
one	for	recognition	strength	or	familiarity	and	one	for	error	correction	or	learning	update.	
As	shown	in	Figure	2,	the	hippocampus	tracked	the	model's	recognition	measure	at	stimulus	
presentation	and	the	error	measure	at	feedback	presentation.	Interestingly,	a	standard	
analysis	contrasting	exception	and	rule-following	items	found	no	significant	difference	--	the	
cognitive	model	proved	critical	to	capturing	how	hippocampal	response	changes	over	the	
course	of	study	trials.		
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The	same	modelling	approach	can	also	be	used	to	localise	two	simultaneous	processes	(by	
using	two	different	model-based	measures)	within	the	same	phase	of	a	trial	to	draw	
distinctions	between	the	function	of	anterior	and	posterior	hippocampus	[9].	Another	way	
to	scale	up	this	basic	univariate	modelling	approach	is	to	adopt	an	encoder	approach	in	
which	the	fitted	cognitive	model	provides	a	number	of	model-based	regressors	to	enter	into	
the	GLM	with	the	goal	of	explaining	the	most	variance	possible	within	brain	regions	of	
interest	[29].	In	the	encoding	approach,	rather	than	trying	to	identify	voxels	that	
significantly	regress	on	some	specific	model-based	measure	(e.g.,	prediction	error),	the	goal	
is	for	multiple	model	measures	to	capture	the	most	overall	variance	possible	in	the	GLM.	
	
Other	model-based	work	[30,31]	reverses	the	flow	of	information	to	incorporate	brain	
measures	directly	into	the	operation	of	the	model	to	better	predict	behaviour.	For	example,	
Kragel	and	colleagues	[30]	used	a	variant	of	the	Context	Maintenance	and	Retrieval	(CMR)	
model	of	free	recall	[32]	that	took	signals	from	the	Medial	Temporal	Lobe	(MTL)	to	
determine	whether	contextual	reactivation	was	successful	at	each	potential	recall	event.	
The	model	that	incorporated	the	BOLD	input	performed	better	than	a	baseline	model	in	
predicting	behaviour.	
	
Rather	than	link	from	model	to	brain	or	brain	to	model,	joint	modelling	approaches	[33,34]	
simultaneously	model	the	mutual	constraints	between	behavioural	and	brain	measures	
through	an	intermediary	cognitive	model.	This	approach	can	deal	with	multiple	brain	
measures	(e.g.,	fMRI	and	EEG)	and	can	make	predictions	about	missing	measures	based	on	
covariance	with	the	observed	measures.	
	
There	are	number	of	other	creative	ways	to	link	cognitive	models	to	BOLD	response.	One	
way	is	to	link	a	key	event,	as	indexed	by	the	cognitive	model,	to	an	operation	in	the	brain.	
For	example,	a	recent	study	finds	that	prediction	errors	during	study	are	predictive	of	later	
replay	events	[20].	In	other	work,	a	Bayesian	model	determined	the	probability	that	an	item	
would	be	remembered,	which	correlated	with	hippocampal	activity	during	encoding	[35].	
	
Finally,	a	cognitive	model's	fitted	parameters	can	be	related	to	the	BOLD	response	instead	
of	a	trial-by-trial	measure	from	the	model.	During	category	learning,	models	[28,36]	predict	
that	goal-relevant	aspects	of	the	stimuli	will	receive	greater	weight	or	attention.	A	recent	
study	found	that	the	learned	attentional	weights	from	category	learning	models	fit	to	
behaviour	were	predictive	of	how	well	those	stimulus	aspects	could	be	decoded	from	the	
BOLD	response	[37].	Related,	in	a	study	exploring	vmPFC-hippocampal	interactions	during	
concept	learning	[12],	the	pattern	of	goal-directed	representation	compression	in	vmPFC	
paralleled	the	attention	weights	from	a	model	fitted	to	behaviour.	
	

Models	can	uncover	useful	latent	states	
	
Models	can	be	useful	in	inferring	latent	states	that	can	help	explain	behaviour	and	its	brain	
basis.	One	example	of	a	latent	variable	are	the	clusters	in	the	aforementioned	learning	
models	[28,38]	which	detail	how	related	items	are	stored	together	in	memory.	Models	
operationalise	these	hypothesised	representational	structures,	which	can	be	useful	in	
analysing	BOLD	response.		
	



Inferring	latent	state	is	more	complex	when	researchers	aim	to	characterise	complex	mental	
operations	that	unfold	through	time	[39].	One	popular	approach	is	to	use	hidden	Markov	
models	(HMMs)	to	infer	what	operations	people	are	currently	undertaking	and	using	this	
characterisation	to	interpret	the	BOLD	response	[40,41].	
	
The	importance	of	inferring	latent	state	is	also	becoming	appreciated	in	related	fields,	such	
as	reinforcement	learning	[42].	Many	of	the	same	conceptual	issues	and	brain	systems	are	
implicated	in	these	tasks	as	in	goal-directed	concept	learning.		For	example,	strategic	
exploration	relies	on	hippocampal-prefrontal	cooperation	[43]	as	is	found	during	memory	
tasks	[12].	
	

Comparing	model	and	brain	representations	
	
In	addition	to	MVPA	decoding,	multivariate	pattern	analysis	can	be	used	to	compare	
proposed	(e.g.,	model)	representations	and	voxel	representations	[44].	This	pattern	
comparison	analysis	is	popularly	known	as	Representational	Similarity	Analysis	(RSA,	[45]).	
RSA	correlates	two	similarity	matrices,	one	from	the	cognitive	model	and	one	from	the	
brain,	to	assess	how	well	the	two	similarity	spaces	align.	RSA	can	be	used	as	confirmatory	
evidence	that	a	model	provides	the	correct	representational	account	of	a	brain	region	or	in	
an	exploratory	fashion	such	as	in	a	whole-brain	searchlight	analysis.	One	application	of	RSA	
is	to	compare	proposed	memory	representations	acquired	by	models	of	concept	learning	to	
brain	regions	thought	to	implement	those	functions	[4,46].	For	example,	RSA	analyses	found	
that	hippocampal	representations	of	objects	are	modulated	by	changes	in	the	task	goal	[10].	
	
For	an	RSA	to	be	model-based,	one	of	the	similarity	matrices	should	be	generated	by	a	
cognitive	model.	RSA	can	involve	the	evaluation	of	several	cognitive	models.	A	variety	of	
models	can	be	considered	and	the	model	whose	representations	best	align	with	the	brain	
can	be	favoured	[46].	However,	not	all	RSAs	are	model-based	and	the	dividing	line	can	be	
blurry.	For	example,	technically,	finding	that	hippocampus	CA1	codes	distance	to	a	goal	[47]	
is	not	model-based	(because	distance	is	specified	by	the	task),	whereas	coding	distance	to	
some	model	quantity,	such	as	distance	to	a	category	prototype	[48],	is	model-based	
(because	the	prototype	is	specified	by	the	fitted	cognitive	model).	For	a	model-based	
analysis	to	be	useful,	it	should	add	something	beyond	a	standard	analysis.	Ideally,	a	model-
based	analysis	would	improve	both	data	fit	and	our	understanding	of	the	domain.	For	
example,	a	model	may	largely	code	distance	to	goal,	but	diverge	in	informative	ways	under	
certain	circumstances	that	could	be	empirically	verified	and	in	turn	deepen	our	
understanding	of	the	domain.	
	
Certainly,	univariate	analyses	can	be	rigorous,	interesting,	and	motivated	but	not	model-
based.	The	same	is	true	in	RSA.	For	example,	a	recent	study	[49]	used	similarity	matrices	
designed	to	capture	perceptual	or	conceptual	similarity	to	hone	in	on	the	function	of	
perirhinal	cortex	and	other	regions.	This	work	is	exciting	and	valuable,	but	because	the	
similarity	matrices	were	derived	from	human	ratings	rather	than	generated	by	a	model	of	
perceptual	or	conceptual	processing,	the	analysis	is	not	model-based.	
	

Conclusions	
	



Adopting	a	model-based	approach	to	fMRI	analysis	can	offer	a	number	of	advantages.	In	
some	cases,	one	can	evaluate	hypotheses	that	otherwise	would	not	be	possible	with	a	
standard	analysis	approach.	Models,	which	are	formalised	as	theories,	offer	the	hope	that	
results	will	be	theoretically	grounded.	As	related	models	are	applied	across	data	sets,	
models	may	promote	a	more	systematic	and	cohesive	science.	Cognitive	models	are	well	
positioned	to	integrate	findings	across	levels	of	analysis	[15].	
	
I	have	reviewed	a	number	of	ways	to	relate	cognitive	models	to	the	BOLD	response.	
Possibilities	include	fitting	models	to	be	behaviour	and	incorporating	derived	trial-by-trial	
measures	into	the	GLM,	model	decoding	approaches	[4],	using	BOLD	response	to	drive	the	
behavioural	predictions	of	the	model,	joint	modelling	to	simultaneously	address	brain	and	
behavioural	measures,	and	RSA	comparisons	of	model	representations	and	BOLD	response.	
Which	approach	is	suitable	is	largely	a	function	of	the	study's	design	and	the	researcher's	
aims.	
	
One	key	question	to	consider	is	why	do	model-based	analyses	work?	Models	are	not	
magical,	nor	guaranteed	to	be	helpful,	so	why	are	there	so	many	cases	in	which	model-
based	analyses	succeed	in	pulling	more	from	the	data	than	would	be	possible	through	a	
standard	analysis?	The	answer	is	that	models	have	the	ability	to	incorporate	constraints	that	
are	outside	the	immediate	study.	In	my	own	work,	models	are	developed	over	years	and	
honed	while	being	applied	to	multiple	behavioural	and	fMRI	datasets.	In	this	sense,	the	
models	have	a	reality	and	value	outside	their	immediate	application,	which	is	critical	
because	a	model-based	analyses	is	only	as	credible	as	the	model	used.	
	

Conflict	of	interest	
	
Nothing	declared.	
	

Acknowledgements	
	
This	work	was	supported	by	NIH	Grant	1P01HD080679,	Wellcome	Trust	Investigator	Award	
WT106931MA,	and	Royal	Society	Wolfson	Fellowship	183029	to	B.C.L.	Thanks	to	Franziska	
Broeker,	Brett	Roads,	Maarten	Speekenbrink	for	helpful	comments.	
	

Annotated	References	
	
*Berens	et	al.	(2018)	The	authors	compare	two	competing	models	of	hippocampal-
mediated	learning	and	find	evidence	in	favour	of	an	all-or-none	account.	
	
*Mack	et	al.	(2019)	The	authors	explore	vmPFC-hippocampal	interactions	and	find	that	
vmPFC	establishes	a	goal-oriented	compression	code	to	support	hippocampal	learning.		
	
*Momennejad	et	al.	(2019)	The	authors	show	that	replay	events	are	predicted	by	error	
during	previous	study.	
	
*Turner	et	al.	(2019b)	The	authors	review	joint	modelling	approaches	in	which	a	cognitive	
model	simultaneously	addresses	behavioural	and	neural	measures.	



	
*Braunlich	&	Love	(2019)	Individual	differences	in	attention	weights	from	learning	models	
fitted	to	behavioural	data	predict	how	well	stimulus	information	can	be	decoded	from	the	
brain.	
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